Multi-class EEG classification of voluntary hand movement directions.
نویسندگان
چکیده
OBJECTIVE Studies have shown that low frequency components of brain recordings provide information on voluntary hand movement directions. However, non-invasive techniques face more challenges compared to invasive techniques. APPROACH This study presents a novel signal processing technique to extract features from non-invasive electroencephalography (EEG) recordings for classifying voluntary hand movement directions. The proposed technique comprises the regularized wavelet-common spatial pattern algorithm to extract the features, mutual information-based feature selection, and multi-class classification using the Fisher linear discriminant. EEG data from seven healthy human subjects were collected while they performed voluntary right hand center-out movement in four orthogonal directions. In this study, the movement direction dependent signal-to-noise ratio is used as a parameter to denote the effectiveness of each temporal frequency bin in the classification of movement directions. MAIN RESULTS Significant (p < 0.005) movement direction dependent modulation in the EEG data was identified largely towards the end of movement at low frequencies (≤6 Hz) from the midline parietal and contralateral motor areas. Experimental results on single trial classification of the EEG data collected yielded an average accuracy of (80.24 ± 9.41)% in discriminating the four different directions using the proposed technique on features extracted from low frequency components. SIGNIFICANCE The proposed feature extraction strategy provides very high multi-class classification accuracies, and the results are proven to be more statistically significant than existing methods. The results obtained suggest the possibility of multi-directional movement classification from single-trial EEG recordings using the proposed technique in low frequency components.
منابع مشابه
Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
OBJECTIVE To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). METHODS Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration w...
متن کاملCorticomuscular Coherence Analysis on Hand Movement Distinction for Active Rehabilitation
Active rehabilitation involves patient's voluntary thoughts as the control signals of restore device to assist stroke rehabilitation. Although restoration of hand opening stands importantly in patient's daily life, it is difficult to distinguish the voluntary finger extension from thumb adduction and finger flexion using stroke patients' electroencephalography (EMG) on single muscle activity. W...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملAdaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
OBJECTIVE The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the enc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2013